mirror of
https://github.com/WMK965/965-R-Learning-Repo.git
synced 2025-04-26 14:03:20 +00:00
Git commits for the collaborative group project
This commit is contained in:
parent
c05892b163
commit
771ad69909
13
Group_Default-R/Default-R.Rproj
Normal file
13
Group_Default-R/Default-R.Rproj
Normal file
@ -0,0 +1,13 @@
|
||||
Version: 1.0
|
||||
|
||||
RestoreWorkspace: Default
|
||||
SaveWorkspace: Default
|
||||
AlwaysSaveHistory: Default
|
||||
|
||||
EnableCodeIndexing: Yes
|
||||
UseSpacesForTab: Yes
|
||||
NumSpacesForTab: 2
|
||||
Encoding: UTF-8
|
||||
|
||||
RnwWeave: Sweave
|
||||
LaTeX: pdfLaTeX
|
2501
Group_Default-R/data.csv
Normal file
2501
Group_Default-R/data.csv
Normal file
File diff suppressed because it is too large
Load Diff
54
Group_Default-R/main.R
Normal file
54
Group_Default-R/main.R
Normal file
@ -0,0 +1,54 @@
|
||||
# Default-R project by 965
|
||||
# Dependencies
|
||||
install.packages(c("caTools", "glm2", "caret", "randomForest", "pROC", "corrplot", "MASS", "car", "carData", "farver"))
|
||||
|
||||
library(caTools)
|
||||
library(glm2)
|
||||
library(caret)
|
||||
library(randomForest)
|
||||
library(pROC)
|
||||
library(corrplot)
|
||||
library(MASS)
|
||||
library(car)
|
||||
library(farver)
|
||||
|
||||
# Preprocessing data
|
||||
weather_data <- read.csv("data.csv")
|
||||
weather_data$rain_numeric <- ifelse(weather_data$Rain == "rain", 1, 0)
|
||||
# str(weather_data)
|
||||
|
||||
# Split data sheet
|
||||
set.seed(841524)
|
||||
split <- sample.split(weather_data$rain_numeric, SplitRatio = 0.7)
|
||||
train_data <- subset(weather_data, split == TRUE)
|
||||
test_data <- subset(weather_data, split == FALSE)
|
||||
|
||||
# Constructing Model & Predict & Evaluate
|
||||
'model <- glm(train_data$rain_numeric ~ train_data$Temperature +
|
||||
train_data$Pressure + train_data$Cloud_Cover +
|
||||
train_data$Wind_Speed + train_data$Humidity,
|
||||
data = train_data, family = binomial)'
|
||||
|
||||
model <- randomForest(train_data$rain_numeric ~ ., data = train_data, class.weight = c(0, 2))
|
||||
|
||||
predictions <- predict(model, newdata = test_data, type = "response")
|
||||
|
||||
confusionMatrix(as.factor(ifelse(predictions > 0.5, 1, 0)),
|
||||
as.factor(test_data$rain_numeric))
|
||||
|
||||
plot(model)
|
||||
|
||||
roc_obj <- roc(test_data$rain, predictions)
|
||||
plot(roc_obj)
|
||||
|
||||
# Step Model & Extract Main factor
|
||||
full_model <- lm(weather_data$rain_numeric ~ weather_data$Temperature +
|
||||
weather_data$Pressure + weather_data$Cloud_Cover +
|
||||
weather_data$Wind_Speed + weather_data$Humidity,
|
||||
data = weather_data)
|
||||
|
||||
step_model <- step(full_model, direction = "both")
|
||||
|
||||
summary(step_model)
|
||||
|
||||
influencePlot(step_model)
|
Loading…
Reference in New Issue
Block a user